N17/4/PHYSI/HP2/ENG/TZ0/XX/M

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

November 2017

Physics

Higher level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question		on	Answers	Notes	Total
1.	а		arrow vertically downwards labelled weight «of sledge and/or girl»/ W /mg/gravitational force/ F_g / $F_{gravitational}$ AND arrow perpendicular to the snow slope labelled reaction force/ R /normal contact force/ $N/F_N \checkmark$ friction force/ F/f acting up slope «perpendicular to reaction force» \checkmark	Do not allow G/g/"gravity". Do not award MP1 if a "driving force" is included. Allow components of weight if correctly labelled. Ignore point of application or shape of object.	
				Ignore "air resistance".	2
				Ignore any reference to "push of feet on sledge".	
				Do not award MP2 for forces on sledge on horizontal ground	
				The arrows should contact the object	
1.	b		gravitational force/weight from the Earth «downwards» \checkmark	Allow naming of forces as in (a)	
			reaction force from the sledge/snow/ground «upwards» \checkmark		3
			no vertical acceleration/remains in contact with the ground/does not move vertically as there is no resultant vertical force \checkmark	Allow vertical forces are balanced/equal in magnitude/cancel out	
1.	с		mention of conservation of momentum	Allow $p = p'$ or other algebraically equivalent	
			OR	statement	
			$5.5 \times 4.2 = (55 + 5.5) $ « v » \checkmark	Award [0] for answers based on energy	2
			0.38 «m s ⁻¹ » ✓		
1.	d		same change in momentum/impulse ✓		
			the time taken «to stop» would be greater «with the snow» 🗸	Allow reverse argument for ice	
			$F = \frac{\Delta p}{\Delta t}$ therefore <i>F</i> is smaller «with the snow» OR force is proportional to rate of change of momentum therefore <i>F</i> is smaller «with the snow» \checkmark		3

(Question 1 continued)

Question		on	Answers	Notes	Total
1.	е	i	«friction force down slope» = $\mu mg \cos(6.5) = (5.9 \text{ N}) $	Ignore negative signs	
			«component of weight down slope» = $mg \sin(6.5) \approx 6.1$ × ✓	Allow use of $g = 10 m s^{-2}$	
			«so $a = \frac{F}{m}$ » acceleration = $\frac{12}{5.5}$ = 2.2 «ms ⁻² » ✓		3
1.	е	ii			
			correct use of kinematics equation \checkmark	Allow ECF from (e)(i)	
			distance = 4.4 <i>or</i> 4.0 «m» ✓		2
			Alternative 2		
			KE lost = work done against friction + GPE \checkmark	Allow [1 max] for GPE missing leading to 8.2 «m»	
			distance = 4.4 <i>or</i> 4.0 «m» ✓		
1.	f		calculates a maximum value for the frictional force = « μR =» 7.5 «N» \checkmark		
			sledge will not move as the maximum static friction force is greater than	Allow correct conclusion from incorrect MP1	2
			the component of weight down the slope \checkmark	Allow 7.5 > 6.1 so will not move	

2.	а		$\ll v = \sqrt{\frac{Gm_E}{r}} \approx = \sqrt{\frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{6600 \times 10^3}} \checkmark$	Full substitution required	2
			7800 «m s ^{−1} » ✓	Must see 2+ significant figures.	
2.	b	i	Y has smaller orbit/orbital speed is greater so time period is less \checkmark	Allow answer from appropriate equation Allow converse argument for X	1

(Question 2 continued)

Question		Answers	Notes	Total
2. b ii		to stop Y from getting ahead 🗸		
		to remain stationary with respect to X \checkmark		2 max
		otherwise will add tension to cable/damage satellite/pull X out of its orbit \checkmark		
С			Marks should be awarded from either one alternative or the other.	
		cable is a conductor and contains electrons \checkmark		
		electrons/charges experience a force when moving in a magnetic field \checkmark		
		use of a suitable hand rule to show that satellite Y becomes negative «so X becomes positive» \checkmark	Do not allow discussion of positive charges moving towards X	3
		Alternative 2		
		cable is a conductor 🖌		
		so current will flow by induction flow when it moves through a B field \checkmark		
		use of a suitable hand rule to show current to right so «X becomes positive» \checkmark		
d		electrons would build up at satellite Y/positive charge at X \checkmark		
		preventing further charge flow 🗸		2 may
		by electrostatic repulsion 🗸		Sillax
		unless a complete circuit exists 🗸		
е		$\ll \varepsilon = B/v = \gg 31 \times 10^{-6} \times 7790 \times 15000 \checkmark$		
		3600 «V» ✔	Allow 3700 «V» from $v = 8000 \text{ ms}^{-1}$.	2
	d e	e lestion	Answersbiito stop Y from getting ahead \checkmark to remain stationary with respect to X \checkmark otherwise will add tension to cable/damage satellite/pull X out of its orbit \checkmark ccccable is a conductor and contains electrons \checkmark electrons/charges experience a force when moving in a magnetic field \checkmark 	Iterative 2 cable is a conductor \checkmark so current will flow by induction flow when it moves through a B field \checkmark use of a suitable hand rule to show current to right so «X becomes positive» \checkmark Do not allow discussion of positive charges moving towards X d electrons will flow by induction flow when it moves through a B field \checkmark use of a suitable hand rule to show current to right so «X becomes positive» \checkmark Do not allow discussion of positive charges moving towards X d electrons would build up at satellite / ypositive charge at X \checkmark preventing further charge flow \checkmark by electrostatic repulsion \checkmark unless a complete circuit exists \checkmark Alternative 3 (a so would build up at satellite / ypositive charge at X \checkmark preventing further charge flow \checkmark by electrostatic repulsion \checkmark unless a complete circuit exists \checkmark Allow 3700 «V» from v= 8000 ms ⁻¹ .

(Question 2 continued)

Question		on	Answers	Notes	Total
2.	f	i	use of $k = \left(\frac{4\pi^2 m}{T^2} \right) = \frac{4 \times \pi^2 \times 350}{5.2^2}$	Allow MP1 and MP2 for a bald correct answer	
			510 ✓	Allow 500	3
			N m ⁻¹ <i>or</i> kg s ⁻² ✓	Allow N/m etc	
2.	f	ii	$E_{\rm p}$ in the cable/system transfers to $E_{\rm k}$ of Y \checkmark	Exclusive use of gravitational potential energy negates MP1	2
			and back again twice in each cycle \checkmark		2

-6-

Question		on	Answers	Notes	Total
3.	а	i	«electron» neutrino ✓ it has a lepton number of 1 «as lepton number is conserved» ✓	Do not allow antineutrino	3
			it has a charge of zero/is neutral «as charge is conserved» OR	Do not credit answers referring to energy	
			it has a baryon number of 0 «as baryon number is conserved» \checkmark		
3.	а	ii	hadrons experience strong force	Accept leptons experience the weak force	
			OR	Allow "interaction" for "force"	
			leptons do not experience the strong force \checkmark		
			hadrons made of quarks/not fundamental		
			OR		2 max
			leptons are not made of quarks/are fundamental \checkmark		
			hadrons decay «eventually» into protons		
			OR		
			leptons do not decay into protons 🗸		

(Question	З	continued)
-----------	---	------------

Question		on	Answers	Notes	Total
3.	b	i	 «high energy particles incident on» thin sample ✓ detect angle/position of deflected particles ✓ reference to interference/diffraction/minimum/maximum/numbers of particles ✓ 	Allow "foil" instead of thin	2 max
3.	b	ii	$\lambda \propto \frac{1}{\sqrt{E}} OR \lambda \propto \frac{1}{E} \checkmark$ so high energy gives small $\lambda \checkmark$ to match the small nuclear size \checkmark <i>Alternative 2</i> $E = hf$ /energy is proportional to frequency \checkmark frequency is inversely proportional to wavelength/ $c = f \lambda \checkmark$ to match the small nuclear size \checkmark <i>Alternative 3</i> higher energy means closer approach to nucleus \checkmark to overcome the repulsive force from the nucleus \checkmark so greater precision in measurement of the size of the nucleus \checkmark	Accept inversely proportional Only allow marks awarded from one alternative	3
3.	С		two analogous situations stated \checkmark one element of the analogy equated to an element of physics \checkmark	eg: moving away from Earth is like climbing a hill where the contours correspond to the equipotentials Atoms in an ideal gas behave like pool balls The forces between them only act during collisions	2

(Question 3 continued)

Question		on	Answers	Notes	Total
3.	d	i	$R = 2.7 \times 10^{-15} \times 2^{\frac{1}{3}} \checkmark$ 3.4 - 3.5 × 10 ⁻¹⁵ «m» ✓	Allow use of the Fermi radius from the data booklet	2
3.	d	ii	correctly plotted ✓	Allow ECF from (d)(i)	1
3.	d		single smooth curve passing through both points with decreasing gradient ✓ through origin ✓	nuclear radius / 10 ⁻¹⁵ m 4 3 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2	2

Q	uestic	on	Answers	Notes	Total
4.	а	i			1
4.	а	ii	power = $1500 \times 8 \times 10^{-3} \times 0.032 \ll 0.034 \gg \checkmark$ «current $\leq \sqrt{\frac{\text{power}}{\text{resistance}}} = \sqrt{\frac{0.384}{82}} \gg$ 0.068 «A» \checkmark	Be aware of ECF from (a)(i)	2
				Award [1] for 4.3 «A» where candidate has not calculated area	
4.	а	iii	 quantities such as resistivity depend on the material OR they allow the selection of the correct material OR they allow scientists to compare properties of materials ✓ 		1
4.	b		as area is larger and length is smaller \checkmark resistance is «very much» smaller \checkmark	Award [1 max] for answers that involve a calculation	2

5.	а	i	$\ll v = c \frac{\sin i}{\sin r} = \gg \frac{3 \times 10^8 \times \sin(33)}{\sin(46)} \checkmark$	2
			2.3×10 ⁸ «ms ⁻¹ » ✓	

(Question	5	continued)
-----------	---	------------

Question		on	Answers	Notes	Total
5.	а	ii	light strikes AB at an angle of 57° \checkmark critical angle is $\ll \sin^{-1}\left(\frac{2.3}{3}\right) = \gg 50.1^{\circ} \checkmark$	49.2° from unrounded value	
			angle of incidence is greater than critical angle so total internal reflection OR light strikes AB at an angle of $57^{\circ} \checkmark$		3 max
			calculation showing sin of "refracted angle" = 1.1 \checkmark		
			statement that since $1.1 > 1$ the angle does not exist and the light does not emerge \checkmark		
5.	а	iii	total internal reflection shown 🗸		
			ray emerges at opposite face to incidence ✓	With sensible refraction in correct direction	2
5.	b	i	mass = «volume × density » $(0.75)^3 \times 920$ «= 388 kg » \checkmark	Accept any consistent units	
			energy required to raise temperature = $388 \times 2100 \times 20 = 1.63 \times 10^7 \text{ J} \approx \checkmark$		
			energy required to melt = $388 \times 330 \times 10^3 = 1.28 \times 10^8 \text{ J}$ *		4
			1.4×10 ⁸ «J» <i>OR</i> 1.4×10 ⁵ «kJ» ✓	Award [3 max] for answer which uses density as 1000 kg ⁻³ (1.5×10^8 «J»)	
5.	b	ii	in solid state, nearest neighbour molecules cannot exchange places/have	OWTTE	
			fixed positions/are closer to each other/have regular pattern/have stronger forces of attraction \checkmark	Accept converse argument for liquids	1 max
			in liquid, bonds between molecules can be broken and re-form \checkmark		

Question		on	Answers	Notes	Total
6.	а	i	the diagram shows the combined effect of «single slit» diffraction and «double slit» interference \checkmark		
			recognition that there is a minimum of the single slit pattern		
			OR		2 max
			a missing maximum of the double slit pattern at A \checkmark		
			waves «from the single slit» are in antiphase/cancel/have a path difference of $(n + \frac{1}{2})\lambda$ /destructive interference at A \checkmark		
6.	а	ii	$\theta = \frac{4.1 \times 10^{-2}}{7.0} OR b = \frac{\lambda}{\theta} \ll \frac{7.0 \times 5.9 \times 10^{-7}}{4.1 \times 10^{-2}} \gg \checkmark$	Award [0] for use of double slit formula (which gives the correct answer so do not award BCA)	2
				Allow use of sin or tan for small angles	2
			1.0×10 ⁻⁴ «m» ✓		
6.	а	iii	use of $s = \frac{\lambda D}{d}$ with 3 fringes $\left(\frac{590 \times 10^{-9} \times 7.0}{4.1 \times 10^{-2}}\right) \times \checkmark$	Allow ECF.	2
			3.0×10 ⁻⁴ «m» ✓		

(Question 6 continued)

Question		on	Answers	Notes	Total
6.	b	i		Award [1 max] for stating one or more differences with no explanation	
				Award [2 max] for stating one difference with its explanation	
				Award [MP3] for a second difference with its explanation	
			fringes are further apart because the separation of slits is «much» less	Allow "peaks" for "fringes"	3
			intensity does not change «significantly» across the pattern or diffraction envelope is broader because slits are «much» narrower		
			the fringes are narrower/sharper because the region/area of constructive interference is smaller/there are more slits		
			intensity of peaks has increased because more light can pass through		
6.	b	ii	$\Delta \lambda = 589.592 - 588.995$		
			OR		
			$\Delta \lambda = 0.597 \text{ «nm » } \checkmark$		
			$N = \ll \frac{\lambda}{m \Delta \lambda} = \gg \frac{589}{2 \times 0.597} \ll 493 \gg \checkmark$		3
			beam width = « $\frac{493}{600}$ =» 8.2×10 ⁻⁴ «m» <i>or</i> 0.82 «mm» ✓		

Question		on	Answers	Notes	Total
7.	а	i	$T = \left(\frac{2.90 \times 10^{-3}}{\lambda_{\text{max}}}\right) = \frac{2.90 \times 10^{-3}}{10.1 \times 10^{-6}} \checkmark$ = 287 «K» or 14 « °C» \checkmark	Award [0] for any use of wavelength from Sun Do not accept 287°C	2
7.	а	ii	wavelength of radiation from the Sun is shorter than that emitted from Earth «and is not absorbed by the atmosphere» ✓ infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere ✓ this radiation is re-emitted in all directions «including back to Earth» ✓		3
7.	b		peer review ✓ international collaboration ✓ full details of experiments published so that experiments can repeated ✓		1 max

Question		on	Answers	Notes	Total
8.	а		force per unit charge 🖌		0
			acting on a small/test positive charge \checkmark		2
8.	b		horizontally to the left \checkmark	Arrow does not need to touch X	1
8.	С		proton moves to the right/they move in opposite directions \checkmark	Allow ECF from (b)	
			force on each is initially the same \checkmark		
			proton accelerates less than electron initially «because mass is greater» \checkmark	Accept converse argument for electron	
			field is stronger on right than left «as lines closer» \checkmark		4 max
			proton acceleration increases «as it is moving into stronger field»		
			OR		
			electron acceleration decreases «as it is moving into weaker field» \checkmark		